با توجه به پیشرفت های صورت گرفته در فناوری سنجشازدور، جمع آوری اطلاعات از وضعیت کیفی منابع آب سطحی به وسیله این فناوری ضمن کاهش هزینه و زمان نمونه برداری های سنتی، می تواند تمامی پهنه های آب سطحی را مورد پایش قرار دهد. در این مطالعه قابلیت تصاویر ماهواره سنتینل-2 جهت برآورد غلظت پارامترهای اسیدیته، بیکربنات و سولفات موردبررسی قرار گرفت. ابتدا تصاویر ماهواره سنتینل-2 پیش پردازش شد و سپس باندها و شاخص های طیفی مناسبی جهت شناسایی ارتباط معنی دار میان مقادیر هر پارامتر کیفیت آب و تصاویر با استفاده از روش رگرسیون چند متغیره تعیین گردید. در مرحله بعد با بهکارگیری دو مدل شبکه عصبی مصنوعی ANN و مدل سیستم استنتاج فازی-عصبی تطبیق یافته ANFIS، ارتباط میان تصاویر ماهواره سنتینل-2 و پارامترهای کیفیت آب به تفکیک مدلسازی شده و سپس دقت آنها به ازای مقادیر واقعی محاسبه گردید. نتایج نشان داد که در مدلسازی پارامتر سولفات با استفاده از ماهواره سنتینل-2، مدل ANFIS به ترتیب با خطای نسبی و جذر میانگین مربعات خطا RMSe برابر 0.0773 و 0.8014 نسبت به مدل شبکه عصبی مصنوعی با خطای نسبی و RMSe برابر 0.1581 و 1.2477 دقت بالاتری دارد؛ درحالیکه در مدلسازی پارامترهای اسیدیته و بیکربنات، نتایج حاصل از مدل شبکه عصبی مصنوعی با خطای نسبی به ترتیب برابر با 0.0064 و 0.0556 و RMSe برابر با 0.0702 و 0.2691 برای هر دو پارامتر بهتر از مدل سیستم استنتاج فازی-عصبی تطبیق یافته با خطای نسبی به ترتیب برابر با 0.0165 و 0.0722 و RMSe برابر با 0.1975 و 0.3307 است. درنهایت با اعمال مدل های تهیهشده بر روی تصاویر ماهواره ای، نقشه وضعیت کیفی هر پارامتر در طول قسمتی از رودخانه کارون تهیه گردید.
برای دانلود این مقاله به لینک زیر مراجعه کنید.
https://girs.iaubushehr.ac.ir/article_670338.html
آموزش کاربردی GIS وRS
همراه با فیلم و کتاب
همراه با پروژه های کاربردی
مدرس:
دکتر سعید جوی زاده
تلفن ثبت نام:
09382252774
آدرس وب سایت:
تمام دوره ها – دوره های آموزشی GIS ، RS ، آمار فضایی ، برنامه نویسی و علمی پژوهشی
بدون دیدگاه