حرکت برف، جریان ذرات برف پراکنده در نزدیکی سطح زمین تحت تأثیر باد، شکل عمده آسیب برف است. هنگامی که برف رانش در راه‌آهن، بزرگراه و سایر خطوط حمل‌ونقل اتفاق می‌افتد، ایمنی عملیاتی آنها را به طور جدی تحت تأثیر قرار می‌دهد و منجر به بلایای برف می‌شود. بلایای برف متحرک اغلب در عرض های جغرافیایی بالا شمال غربی چین رخ می دهد. در حال حاضر، اکثر محققان متعهد به مطالعه اقدامات پیشگیری و کنترل برف رانش هستند، اما لازمه پیشگیری، ارزیابی موثر حساسیت برف رانش در امتداد راه‌آهن و بزرگراه‌ها برای شناسایی مناطق با خطر وقوع بالا است. به عنوان مثال راه آهن سین کیانگ آفوکوژن را در نظر بگیرید، این مطالعه از یک سیستم اطلاعات جغرافیایی (GIS) همراه با نظارت و بررسی در محل برای ایجاد یک سیستم شاخص ارزیابی حساسیت برف در حال حرکت استفاده می‌کند. شاخص حساسیت برف رانش (DSSI) از طریق وزن مدل شواهد (WOE) محاسبه می‌شود، و الگوریتم پس انتشار الگوریتم ژنتیک (GA-BP) برای به دست آوردن وزن‌های شاخص ارزیابی بهینه برای بهبود دقت ارزیابی مدل استفاده می‌شود. نتایج نشان می دهد که دقت مدل WOE، مدل WOE پس انتشار (WOE-BP) و وزن شواهد الگوریتم ژنتیک پس انتشار (WOE-GA-BP) به ترتیب 0.747، 0.748 و 0.785 است که نشان می دهد روش می تواند به طور موثر برای ارزیابی حساسیت برف رانش استفاده شود. شاخص حساسیت برف رانش (DSSI) از طریق وزن مدل شواهد (WOE) محاسبه می‌شود، و الگوریتم پس انتشار الگوریتم ژنتیک (GA-BP) برای به دست آوردن وزن‌های شاخص ارزیابی بهینه برای بهبود دقت ارزیابی مدل استفاده می‌شود. نتایج نشان می دهد که دقت مدل WOE، مدل WOE پس انتشار (WOE-BP) و وزن شواهد الگوریتم پس انتشار الگوریتم ژنتیک (WOE-GA-BP) به ترتیب 0.747، 0.748 و 0.785 است که نشان می دهد روش می تواند به طور موثر برای ارزیابی حساسیت برف رانش استفاده شود. شاخص حساسیت برف رانش (DSSI) از طریق وزن مدل شواهد (WOE) محاسبه می‌شود، و الگوریتم پس انتشار الگوریتم ژنتیک (GA-BP) برای به دست آوردن وزن‌های شاخص ارزیابی بهینه برای بهبود دقت ارزیابی مدل استفاده می‌شود. نتایج نشان می دهد که دقت مدل WOE، مدل WOE پس انتشار (WOE-BP) و وزن شواهد الگوریتم ژنتیک پس انتشار (WOE-GA-BP) به ترتیب 0.747، 0.748 و 0.785 است که نشان می دهد روش می تواند به طور موثر برای ارزیابی حساسیت برف رانش استفاده شود.

کلید واژه ها:

GIS _ برف رانش ; GA-BP ; وای _ حساسیت

1. مقدمه

برف رانش یک جریان دو فازی غیر معمول گاز-جامد است که در آن ذرات پراکنده برف تحت تأثیر باد در نزدیکی زمین حرکت می کنند. همچنین به عنوان جریان طوفان برفی [ 1 ، 2 ] نیز شناخته می شود، شکل اصلی آسیب برف است. در وهله اول، برف رانش را می توان با توجه به ارتفاع وزش مشخص کرد: (1) برف با رانش کم، که در آن ارتفاع وزش در محدوده 0 تا 2 متر در نزدیکی سطح است. (2) وزش برف، در جایی که ارتفاع وزش بیش از 2 متر باشد. (iii) طوفان برفی که در شرایط دمای بسیار پایین و سرعت باد شدید رخ می دهد و در طی آن دید بسیار کم است [ 3 ]]. یک توصیف جایگزین بر اساس حرکت ذرات برف در برف در حال حرکت است که می‌توان آن‌ها را بر اساس حالت‌های متحرک مختلف به سه گروه تقسیم کرد: خزش، پرش و تعلیق [ 4 ]. بارش برف عمدتاً در چین، روسیه، ایالات متحده و سایر کشورهای با عرض جغرافیایی زیاد توزیع می شود. در چین، در سین کیانگ، شمال شرقی چین، تبت و سایر مناطق توزیع شده است [ 5 ]. جابجایی برف به شدت بر حمل و نقل، تولیدات کشاورزی و دامپروری، ساخت و سازهای صنعتی، و ایمنی زندگی و دارایی مردم تأثیر می گذارد [ 6 ، 7 ، 8 ، 9 ، 10 ، 11 ، 12 ].
طوفان های برفی فوریه 1978 در انگلستان منجر به خسارت 1 میلیارد دلاری شد. در اکتبر 1985، یک فاجعه در حال حرکت برف فلات چینگهای-تبت را تحت تاثیر قرار داد و منطقه آسیب دیده معادل منطقه ترکیبی استان های جیانگ سو و شاندونگ چین بود. در فوریه 2009، بریتانیا با بدترین طوفان برفی قرن مواجه شد، با بیش از 3000 مدرسه تعطیل و بسته شدن عمده در جاده‌ها، راه‌آهن، لوله‌ها و سیستم‌های حمل‌ونقل هوایی، که تقریباً 1.2 میلیارد پوند برای اقتصاد هزینه داشت [ 13 ]. در 3 ژانویه 2010، طوفان ناگهانی برف در مغولستان داخلی منجر به تجمع برف سنگین در خط راه آهن شد. بیش از 1817 قطار متوقف شد و چندین واگن در برف مدفون شد و بیش از 1400 مسافر را گرفتار کرد [ 14 ]]. در 22 دسامبر 2012، در اثر شدت سردی شدید و باد شدید، بخشی از خط اتصال G30 در سین کیانگ تحت تأثیر برف رانش شد. بیش از 300 وسیله نقلیه مسدود شدند و صدها نفر در یک بخش شش کیلومتری گرفتار شدند. در فوریه 2013، یک طوفان برفی بزرگ به نام نمو بخش شمال شرقی ایالات متحده را درنورد که باعث شد پنج ایالت وضعیت اضطراری اعلام کنند. تمام بزرگراه ها در ماساچوست بسته شدند [ 15]. از 29 تا 13 فوریه 2016، بلایای شدید برف رانش اغلب در مایتاس، منطقه سین کیانگ رخ داده است که باعث ایجاد ترافیک و گرفتار شدن صدها خودرو و مسافر در مناطق فاجعه شده شده است. با تسریع ساخت و ساز در شمال غربی چین، ساخت و ساز جاده نیاز مبرمی به ارزیابی ریسک و حفاظت موثر از بلایای برفی را نشان داده است.
از بین عوامل دینامیکی مختلف، بلایای برفی را می توان به دو دسته طبقه بندی کرد. یکی فاجعه ناشی از انباشته شدن برف طبیعی به ضخامت معین، و دیگری فاجعه برف رانش در مناطق خاص ناشی از انتقال باد است. چندین محقق اثر انسدادی اجسام در برف رانش [ 16 ، 17 ]، و رابطه بین سرعت باد، اندازه ذرات برف و خروجی برف [ 18 ، 19 ، 20 ، 21 ] را مطالعه کرده اند. تحقیقات ارزیابی اولیه بلایای برفی بر اساس ترکیبی از داده های ماهواره ای و نظریه روش ریاضیات فازی [ 22 ، 23 ، 24 ،25 ، 26 ، 27 ، 28 ]. با توسعه مداوم سیستم‌های اطلاعات جغرافیایی (GIS)، چندین محقق شروع به استفاده از آنها برای ارزیابی خطر بلایای برفی کرده‌اند. به عنوان مثال، عوامل بلایای برفی استخراج و با یک روش خوشه‌بندی وزن خاکستری و یک فرآیند سلسله مراتبی تحلیلی برای ایجاد یک مدل ارزیابی بلایای برفی و تجزیه و تحلیل منطقه‌بندی خطر بلایای برفی ترکیب شده‌اند [ 29 ، 30 ، 31 ].
با این حال، نتایج تحقیقات موجود دارای کاستی های قابل توجهی برای رانش برف، به ویژه برای بلایای برف رانش راه آهن است. اولاً، عوامل تأثیرگذار مهندسی خطی برف رانش به طور قابل توجهی با بلایای برفی طبیعی متفاوت است، اما مطالعات اخیر به طور خاص یک سیستم شاخص ارزیابی خطر را برای بلایای برف رانش راه آهن ایجاد نمی کند [ 32 ، 33 ، 34 ]. علاوه بر این، تحقیقات ریسک بر برف و وضعیت ناشی از یخ زدگی جاده ها متمرکز است [ 35 ، 36 ، 37 ، 38 ، 39]. ثانیاً، در حین استقرار نظام ارزیابی شاخص، تحلیل عینی وزن هر شاخص وجود ندارد. علاوه بر این، تحلیل‌های احتمالی و فازی روش‌های اصلی مورد استفاده برای توسعه سیستم هستند [ 40 ، 41 ].
این مطالعه از راه‌آهن سین‌کیانگ آفوزون به‌عنوان هدف تحقیق، همراه با داده‌های بررسی سایت و پایش مبتنی بر یک پلت فرم GIS استفاده می‌کند، یک سیستم ارزیابی حساسیت برف رانش راه‌آهن ایجاد می‌کند و از مدل وزن شواهد (WOE) برای محاسبه شاخص حساسیت استفاده می‌کند. . سپس با ترکیب الگوریتم پس انتشار الگوریتم ژنتیک (GA-BP)، وزن هر عامل شاخص برای بهینه سازی نتایج ارزیابی مورد مطالعه قرار گرفت و قابلیت اطمینان روش توسط یک منحنی مشخصه عملکرد گیرنده (ROC) تأیید شد. نتیجه نشان می دهد که این روش می تواند مرجعی برای سایر پروژه های راه آهن مشابه باشد.

2. مدل ارزیابی

2.1. روش وزن شواهد

روش WOE بر اساس تئوری آماری بیزی است. این روش از تجزیه و تحلیل آماری سهم عوامل سطح شواهد در هدف تحقیق برای پیش‌بینی اینکه آیا رویداد رخ خواهد داد استفاده می‌کند. به این ترتیب، می توان از تأثیر عوامل ذهنی به طور مؤثر اجتناب کرد [ 42 ]. این روش ابتدا در زمینه پزشکی اعمال شد و سپس توسط زمین شناسان بونهام-کارتر و همکاران معرفی شد. [ 43 ] و Ahterberg و همکاران. [ 44 ] در زمینه تحقیقات معدنی. به طور گسترده ای در تحقیقات در مورد زمین لغزش، جریان زباله و سایر خطرات زمین شناسی استفاده شده است [ 45 ]. با این حال، به ندرت برای ارزیابی بلایای برفی در حال حرکت استفاده شده است.

محل شروع مناسب برای توصیف اصل ریاضی WOE این است که منطقه مورد مطالعه را به طور مساوی به شبکه های N تقسیم کنیم، جایی که M نشان دهنده تعداد کل شبکه های با برف در حال حرکت است، و نشان دهنده تعداد کل شبکه های بدون برف است. تعداد شبکه‌های دارای برف در حال حرکت در طبقه‌بندی حالت ثانویه یک لایه شواهد خاص با A نشان داده می‌شود و رویداد نشان دهنده تعداد شبکه های برفی در حال حرکت است که رخ نداده اند. برای وضعیت ثانویه هر عامل شواهد، سهم آن در برف رانش به صورت تعریف شده است

که در آن P(A⁄M) احتمال شرطی است، که احتمال وقوع A در زیر M است.

مقادیر محاسبه شده از و می تواند تأثیر طبقه بندی حالت ثانویه در لایه شواهد را بر وقوع برف در حال حرکت نشان دهد. به طور مشخص، > 0 یا < 0 نشان می دهد که فاکتور درجه بندی برای وقوع برف در حال حرکت مساعد است، در حالی که < 0 یا > 0 به طور متناوب نشان می دهد که برای وقوع برف مساعد نیست. تفاوت بین این دو می تواند نشان دهنده قدرت همبستگی بین عامل ثانویه و برف رانش باشد، یعنی: . بزرگتر این است که شاخص این عامل ثانویه برای وقوع برف رانش بهتر است. برعکس، اگر شاخص ضعیف باشد، عامل ثانویه برای وقوع برف در حال حرکت مساعد نیست. اگر = 0، عامل ثانویه هیچ تاثیری بر رانش برف ندارد.

2.2. مدل کوپلینگ

رابطه بین عوامل مختلف مؤثر بر باد و برف و وقوع برف در حال حرکت پیچیده و غیرخطی است. نمی توان آن را با استفاده از روابط عملکردی به طور دقیق مطالعه کرد. با این حال، شبکه عصبی BP کاربرد خوبی برای مسائل غیر خطی دارد و می‌تواند برای ارزیابی بلایای برف رانش [ 46 ] استفاده شود. در مطالعات قبلی بیشتر برای ارزیابی خطر زمین لغزش استفاده شده است. عوامل موثر بر پایداری زمین لغزش ها به عنوان لایه ورودی و از شاخص ریسک به عنوان لایه خروجی استفاده می شود. با این حال، توجه به ارتباط بین نورون ها اندکی وجود نداشت [ 47 ، 48]. الگوریتم ژنتیک می‌تواند وزن‌ها و آستانه‌های شبکه عصبی را در عین استفاده کامل از توانایی نگاشت غیرخطی شبکه عصبی و بهبود سرعت هم‌گرایی و دقت پیش‌بینی شبکه عصبی بهینه کند [ 49 ]. بنابراین، وزن هر لایه ورودی در شبکه عصبی BP بهبود یافته را می توان با مدل وزن شواهد برای به دست آوردن شاخص حساسیت برف رانش (DSSI) همراه کرد و نقشه منطقه حساسیت را می توان با استفاده از پلت فرم GIS به دست آورد. فرآیند محاسبه در شکل 1 نشان داده شده است .

3. مروری بر منطقه مورد مطالعه و منابع داده

3.1. مروری بر منطقه مورد مطالعه

راه آهن A(Aletai)-F(Fuyun)-Z(Zhun-dong) در استان خودمختار Changji در منطقه Aletai، منطقه خودمختار سین کیانگ اویغور واقع شده است. در یک شهر، دو کشور و هشت منطقه اداری قرار دارد. این خط بین 45 درجه و 11 درجه تا 48 درجه و 11 دقیقه شمالی و 87 درجه و 38 تا 90 درجه و 32 دقیقه شرقی با ارتفاع کلی 597 تا 1219 متر قرار دارد، جایی که زمین پست عموماً به سمت شمال است و ارتفاعات مرتفع به طور کلی تا جنوب. از شمال غربی به جنوب شرقی از دو واحد ژئومورفیک یعنی دشت آبرفتی بین کوهی و ناحیه کم ارتفاع در دامنه جنوبی کوه های آلتای می گذرد ( شکل 2 ).
راه آهن AFZ ( شکل 3 ) از منطقه بین منطقه شمال غربی حوضه Zhungeer و دامنه جنوبی کوه های آلتای می گذرد که به آب و هوای معتدل قاره ای تعلق دارد. در تابستان باران کم است و زمستان ها سرد و طولانی است. دهانه شمال به جنوب کل خط بزرگ است و در مناطق با عرض جغرافیایی بالا قرار دارد. منطقه دارای برف عمیق در زمستان با سرعت باد زیاد است. این یکی از سه منطقه اصلی پوشیده از برف در چین است.

3.2. منبع اطلاعات

منطقه حساسیت بر اساس GIS به مقدار زیادی داده شطرنجی از جمله داده های زمین، داده های میدان باد و داده های عمق برف در طول خط نیاز دارد. بنابراین، داده های تحقیق در این تحقیق به سه دسته تقسیم می شوند و وضوح شطرنجی 10 متر × 10 متر است:
  • داده های زمین
داده های توپوگرافی شامل داده های ارتفاعی، برجستگی توپوگرافی، ناهمواری و جنبه شیب است. بر اساس داده های ارتفاعی دیجیتال با وضوح 30M “ابر داده های جغرافیایی”، این بخش از داده ها را می توان با استفاده از توابع تحلیل مربوط به GIS به دست آورد.
2.
داده های میدان باد
سرعت باد و جهت باد غالب، جهت و روند حرکت جریان برف را تعیین می کند. راه آهن AFZ در منطقه ای کوهستانی با زمین های پیچیده قرار دارد که سرعت باد و جهت باد را به طور قابل توجهی تغییر می دهد. الزامات تحقیق را نمی توان تنها با تکیه بر داده های هواشناسی تاریخی ایستگاه های هواشناسی مجاور برآورده کرد. بنابراین، برای دو سال متوالی، 20 ایستگاه پایش هواشناسی ( شکل 4 ) که در امتداد کل خط راه آهن راه اندازی شد، سرعت و جهت باد را در منطقه پروژه پایش کردند.
3.
داده های عمق برف در محل
ضخامت برف در حال حرکت در طول راه آهن یک استاندارد مهم برای اندازه گیری درجه شدت آن و ارزیابی حساسیت برف رانش است. بنابراین، گروه تحقیقاتی ما پرسنل را سازماندهی کرد تا اندازه‌گیری‌های میدانی ضخامت برف در حال حرکت را در امتداد راه‌آهن انجام دهند ( شکل 5 ) و مجموعه داده‌های مربوطه را ایجاد کردند.

4. ایجاد سیستم شاخص ارزیابی و ساخت مدل

4.1. سیستم شاخص ارزیابی

وقوع بلایای برف رانش نتیجه بارش طبیعی برف، میدان باد و عوامل زمین است. بر اساس نتایج تحقیقات قبلی و داده های میدانی از شرایط محیطی منطقه، یعنی شرایط میدان برفی و باد منطقه، این مطالعه ارتفاع، دامنه تسکین، ناهمواری سطح، جهت، بارش برف، فراوانی بارش برف سنگین، میانگین سرعت باد، حداکثر سرعت باد را انتخاب کرد. ، زاویه بین جهت باد و خط و فرکانس سرعت باد برفی. بنابراین، در مجموع از ده عامل تأثیرگذار برای ساختن سیستم شاخص ارزیابی استفاده شد ( شکل 6 ).

4.2. طبقه بندی عوامل شاخص

داده های عامل شاخص شامل انواع داده های پیوسته و گسسته است. برای داده های پیوسته، معنای فیزیکی باید گسسته شود. برای داده های گسسته، هر سطح معنای فیزیکی واضحی دارد. در نهایت، نسبت مساحت برف در حال حرکت، نسبت سطح درجه بندی شده و WOE برای ارزیابی جامع تأثیر وضعیت ثانویه هر عامل شاخص بر برف در حال حرکت استفاده می شود [ 50 ]]. نسبت مساحت برف در حال رانش برابر با مساحت برف در حال حرکت در حالت ثانویه ضریب شاخص / مساحت کل برف در حال حرکت در کل منطقه است. نسبت سطح درجه بندی شده مساحت هر حالت ثانویه عامل شاخص در مقایسه با مساحت کل عامل شاخص است. اندازه‌های نسبی آن‌ها نشان‌دهنده اهمیت هر طبقه‌بندی حالت سطح دوم این عامل شاخص برای حساسیت برف رانش [ 51 ] است. اگر نسبت مساحت برف در حال حرکت بیشتر از نسبت مساحت درجه بندی شده باشد، نشان می دهد که برف رانش به راحتی در حالت درجه بندی شده رخ می دهد. در غیر این صورت برعکس است.

4.2.1. شرایط محیطی منطقه ای

  • ارتفاع
تأثیر ارتفاع بر برف در دو جنبه منعکس می شود. اولاً، ارتفاع می تواند بر سرعت باد و اندازه بخش جریان تأثیر بگذارد، یعنی با افزایش ارتفاع، بخش جریان کاهش می یابد و سرعت باد در مناطق با ارتفاع بالا افزایش می یابد. ثانیا، سرعت باد می تواند بر دما تأثیر بگذارد. علاوه بر این، اندازه ذرات برف رابطه نزدیکی با دما دارد. دما می تواند بر سرعت ذوب ذرات برف تأثیر بگذارد. هر چه درجه ذوب ذرات برف عمیق تر باشد، اندازه ذرات بزرگتر و سرعت شروع باد مربوطه سریعتر است. ارتفاع این منطقه مورد مطالعه بین 597 متر تا 1219 متر، وقوع رانش بین 597 متر تا 1063 متر متمرکز است و برف رانش بالای 1063 متر وجود ندارد. با توجه به توزیع واقعی، ارتفاع به پنج حالت ثانویه تقسیم می شود: 597-764 متر، 764-865 متر، 865-955 متر، 955-1063 متر، و 1063-1219 متر. نسبت مساحت برف در حال حرکت، نسبت مساحت طبقه‌بندی و WOE در هر حالت ثانویه محاسبه شد.شکل 7 ).
2.
دامنه تسکین
دامنه تسکین به تفاوت ارتفاع بین بالاترین نقطه و پایین ترین نقطه در یک محدوده خاص اشاره دارد که نشان دهنده شیب زمین در یک منطقه خاص است. اندازه دامنه تسکین همچنین می تواند نشان دهنده میزان بی نظمی زمین در یک منطقه خاص باشد. هنگامی که دامنه تسکین کوچک است، حرکت باد نزدیک به زمین تحت تأثیر مقاومت اصطکاک قرار می گیرد و سرعت باد کمی تغییر می کند. ذرات برف زمینی تحت تأثیر یک نیروی افقی قرار می گیرند، اما نیروی عمودی قابل توجه نیست و ذرات برف روند حرکتی صعودی ندارند. علاوه بر این، هنگامی که دامنه تسکین زیاد است، تلاطم هوا بزرگتر می شود و یک گرداب تشکیل می شود. در این زمان نیروی عمودی وارد بر ذرات برف روی زمین افزایش می یابد. هنگامی که نیروی عمودی بیشتر از نیروی گرانش بر ذرات برف است، با باد عرضی تکمیل می‌شود، ذرات برف از زمین پرواز می‌کنند و برف متحرک را تشکیل می‌دهند. بنابراین، در این مطالعه، دامنه تسکین به پنج حالت ثانویه تقسیم می شود: 0-17، 17-25، 25-37، 37-59، 59-137. نسبت مساحت برف در حال حرکت، نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه شمارش شد (شکل 8 ).
3.
زبری سطح

زبری سطح نسبت سطح واقعی زمین به منطقه پیش بینی شده در یک محدوده مشخص است که منعکس کننده ناهمواری سطح زمین است. فرمول به شرح زیر است:

در فرمول، a شیب واحد شبکه ثانویه است. سپس، مساحت سطح AB ، مساحت سطح شبکه ثانویه است، و مساحت سطح AC ، ناحیه پیش بینی شده شبکه است، که در آن cos a = AC/AB است، که نتیجه آن مقطع شیب است.
دامنه تسکین بر تلاطم سیال در فواصل نسبتاً بزرگ تأثیر می گذارد، در حالی که زبری سطح بر تلاطم فقط در فواصل کوچک تأثیر می گذارد. با این حال، هر دو این عوامل می توانند نیروی عمودی بر ذرات برف را افزایش دهند. علاوه بر این، به راحتی می توان تحت تأثیر نیروی عرضی حرکت کرد و در نهایت برف رانش را تشکیل داد. بنابراین، در این مطالعه، زبری سطح به چهار حالت ثانویه تقسیم می‌شود: 1.009-1، 1.009-1.034، 1.034-1.12، و 1.12-1.668. نسبت مساحت برف در حال حرکت، نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 9 ).
4.
جنبه
تفاوت در جنبه شیب منجر به زمان های مختلف خورشید می شود. زمان طولانی آفتابی منجر به شیب آفتابی می شود. زمان کوتاه آفتابی منجر به شیب سایه‌دار می‌شود. شیب جنوبی نیمکره شمالی نسبت به شیب شمالی زمان آفتابی طولانی تری دارد. تأثیر جهت شیب در دو جنبه منعکس می شود. اولا، جهت‌های شیب مختلف ساعات نور متفاوتی را دریافت می‌کنند و در نتیجه دماهای منطقه‌ای متفاوتی ایجاد می‌کنند که بر سرعت ذوب ذرات برف تأثیر می‌گذارد [ 52 ].]. ثانیاً، در جهات مختلف شیب، تفاوت هایی در پوشش گیاهی وجود دارد. گیاهان در دامنه های آفتابی به وفور رشد می کنند، و سیستم تاج و ریشه بالای زمین آنها توسعه یافته تر است، به این معنی که آنها همچنین اثر مسدود کننده بهتری در برف رانش دارند. از این رو، در این مطالعه، این جنبه به شش حالت ثانویه تقسیم می شود: 0-60 درجه، 60-120 درجه، 120-180 درجه، 180-240 درجه، و 240-360 درجه. نسبت مساحت برف در حال حرکت، نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 10 ).
4.2.2. شرایط میدان برفی منطقه ای
  • بارش برف
بارش برف سالانه یک عامل مهم در جابجایی برف است و منبع برف در یک منطقه خاص بر اساس میزان بارش برف کافی نامیده می شود. بر اساس داده های بارش برف سکوی «ابر داده های جغرافیایی»، بارش برف در منطقه مورد مطالعه به چهار حالت ثانویه تقسیم می شود: 40-900 میلی متر، 900-1350 میلی متر، 1350-1700 میلی متر و 1700-1928 میلی متر. نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 11 ).
2.
فراوانی بارش برف سنگین
با توجه به زمان های مختلف، ذرات برف روی زمین را می توان به برف جدید و برف قدیمی تقسیم کرد. اندازه ذرات برف جدید نسبتاً کوچکتر از برف قدیمی است. معمولاً در عرض چند روز پس از بارش برف، برف در حال حرکت زیاد است. هر چه زمان از بارش برف بیشتر باشد، اندازه ذرات برف بزرگتر است. بنابراین، وقوع برف رانش با فراوانی بارش برف مرتبط است. هر چه بارش برف بیشتر باشد، میزان کل برف تازه بیشتر و احتمال ریزش برف بیشتر می شود. با توجه به نتایج تحقیقات قبلی و داده های آماری ایستگاه ملی هواشناسی در منطقه آلتای (1961-2013) [ 53]، فراوانی بارش برف سنگین در این منطقه مورد مطالعه را می توان به چهار حالت ثانویه تقسیم کرد: 1.5-2.0، 2.05-2.75، 2.75-3.1، و 10-3.50. نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 12 ).
4.2.3. شرایط میدان باد منطقه ای
  • سرعت باد
وزش باد شرط لازم برای تشکیل برف در حال حرکت است. طبق فرمول مکانیکی حرکت ذرات برف تابعی از سرعت باد است. بنابراین، سرعت باد یک عامل مهم در ارزیابی حساسیت برف رانش است.
روش های تحلیل آماری زیادی برای سرعت باد وجود دارد. به عنوان مثال، میانگین و حداکثر سرعت باد روش های آماری معمولی هستند. برای تجزیه و تحلیل بیشتر داده های سرعت باد جمع آوری شده در محل، داده های آماری سرعت باد به دو نوع تقسیم می شوند: میانگین و حداکثر سرعت باد. هر دوی آنها به عنوان شاخص های ارزیابی برف رانش استفاده می شوند. با توجه به داده های سرعت باد جمع آوری شده در محل در زمستان 2018 و 2019 ( جدول 1، میانگین سرعت باد و حداکثر سرعت باد به چهار حالت ثانویه تقسیم می شوند. میانگین سرعت باد به 1.29-1.34 m/s، 1.34-1.67 m/s، 1.67-1.8 m/s و 1.8-2.73 m/s تقسیم می شود و حداکثر سرعت باد به 7.7-11.7 m/s تقسیم می شود. s، 11.7-13.05 m/s، 13.05-13.7 m/s و 13.7-15.25 m/s حالات. نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 13 ).
2.
زاویه بین جهت باد و خط
زاویه بین جهت باد و خط می تواند تا حد زیادی بر مقاومت برف بخش های جاده منطقه ای ناشی از رانش برف تأثیر بگذارد. جهت خط و باد بین 0 تا 90 درجه تغییر می کند. هنگامی که زاویه بین خط و جهت باد 90 درجه باشد، خط بیشترین اثر مسدود کننده را بر جریان باد و برف دارد و ذرات برف تجمع بزرگی را در لایه زیرین خط تشکیل می دهند. هنگامی که زاویه بین خط و جهت باد 0 درجه باشد، ذرات برف در جریان برف در حال حرکت با جهت خط مطابقت دارند و توسط خط مسدود نمی شوند، بلکه در بستر جاده تجمع می یابند. با توجه به داده های پایش به دست آمده در میدان و ترکیب با وضعیت واقعی در منطقه تحقیقاتی، زاویه بین جهت باد اصلی و خط به پنج حالت ثانویه تقسیم می شود: 0-17.5 درجه، 17.5-6.5، 36.5-55. 5 درجه، 55.5-74.5 درجه و 74.5-89 درجه. نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد (شکل 14 ).
3.
فرکانس سرعت باد برفی
سرعت شروع باد ذرات برف تا حد زیادی با اندازه ذرات برف مرتبط است. به طور کلی، سرعت باد شروع ذرات برف با اندازه ذرات کوچک کمتر است. با توجه به یافته های تحقیقاتی، زمانی که دما زیر 6- درجه سانتی گراد است، سرعت باد شروع بارش برف تقریباً 3.4 متر بر ثانیه است [ 54 ]. دمای زمستان در منطقه مورد مطالعه نسبتاً پایین است. در بیشتر موارد، دما کمتر از -6 درجه سانتیگراد است. سرعت شروع باد برفی که توسط آزمایش تونل باد در محل اندازه گیری شد تقریباً 4 متر بر ثانیه (ارتفاع 3 متر) است. بنابراین سرعت 4 متر بر ثانیه به عنوان سرعت شروع باد برف تعریف می شود و نتایج آماری در جدول 2 نشان داده شده است.. فراوانی سرعت باد برفی در منطقه مورد مطالعه به شش حالت ثانویه تقسیم می شود: 0.55-1.59٪، 1.59-4.58٪، 4.58-6.06٪، 6.06-12.2٪، 12.2-17.7٪، 17.7-23.18٪. نسبت مساحت طبقه بندی و WOE در هر حالت ثانویه محاسبه شد ( شکل 15 ).

4.3. تجزیه و تحلیل ساخت مدل WOE بهبود یافته توسط الگوریتم GA-BP

4.3.1. مدل وزن شواهد (WOE).

ما از فرمول های بخش 2.1 (معادلات (1) و (2)) برای محاسبه وزن شواهد عامل وضعیت ثانویه هر شاخص ( جدول 3 ) استفاده کردیم. بر این اساس، ArcGIS برای روی هم قرار دادن هر لایه ضریب تاثیر برای محاسبه شاخص حساسیت برف رانش (DSSI) کل منطقه مورد مطالعه استفاده شد. DSSI مجموع جبری fi است که با استفاده از همپوشانی ماشین حساب شبکه محاسبه می‌شود و مقدار عددی آن می‌تواند نشان‌دهنده درجه حساسیت به برف رانش باشد. DSSI در منطقه مورد مطالعه در محدوده -8.27-9.89 است.

fi – وزن شواهد برای هر عامل حالت ثانویه.
22,912,695 شبکه در منطقه در امتداد راه آهن وجود دارد که شامل 1,405,522 شبکه برای مناطق کم مستعد، 4869708 شبکه برای مناطق مستعد متوسط ​​و 3988465 شبکه برای مناطق پرخطر است که 61.34% و 21.25% را شامل می شود. مناطق با حساسیت بالا در DK57-DK116 کیلومتر، مناطق نسبتا حساس در Km DK0-DK57، و DK116-DK139 کیلومتر متمرکز هستند، و بقیه مناطق کم مستعد هستند ( شکل 16 ).
4.3.2. بهینه سازی الگوریتم GA-BP
اگرچه مدل WOE می‌تواند تأثیر هر عامل شاخص را بر ریسک مشخص کند، اما نسبت وزن هر عامل را در محاسبه انباشتگی در نظر نمی‌گیرد، که اهمیت نسبی هر عامل شاخص را در سهم کلی نادیده می‌گیرد. با این حال، مدل شبکه عصبی ویژگی‌های جعبه سیاه قابل توجهی دارد و می‌تواند رفتارهای غیرخطی را از داده‌های آموزشی استخراج کند، که مزایای قابل‌توجهی در تعیین وزن عوامل ارزیابی دارد [ 55 ، 56 ، 57 ]. الگوریتم ژنتیک می تواند وزن شبکه عصبی را بهینه کرده و دقت ارزیابی مدل را بهبود بخشد. ساخت مدل شبکه عصبی در تحقیقات متعدد به تفصیل مورد مطالعه قرار گرفته است [ 58,59 ,60 ] و بنابراین در اینجا ذکر نشده است. این مطالعه یک مدل شبکه عصبی 10-12-1 می سازد. این مدل شامل ده نورون لایه ورودی مربوط به شاخص های ارزیابی یک به یک، یک نورون لایه خروجی مربوط به DSSI و 12 نورون لایه پنهان است.
22,912,695 واحد شبکه در این منطقه تحقیقاتی و 2,171,375 واحد شبکه در منطقه برف رانش وجود دارد. ما به طور تصادفی 2000 شبکه را از شبکه برف در حال حرکت و شبکه برف غیر رانش انتخاب کردیم، در مجموع 4000 سلول شبکه. شاخص ارزیابی که داده‌های مربوط به هر شبکه را نسبت می‌دهد به عنوان لایه ورودی استخراج می‌شود و DSSI به عنوان لایه خروجی برای ساخت نمونه‌های آموزشی شبکه عصبی استخراج می‌شود. ابتدا از شبکه عصبی BP برای تمرین استفاده کردیم، مقدار وزن را محاسبه کردیم و سپس از الگوریتم GA برای بهبود شبکه عصبی استفاده کردیم ( شکل 17 )، که برای بازآموزی و محاسبه مقدار وزن استفاده شد ( جدول 4 ).
شکل 17 نشان می دهد که با استفاده از شبکه عصبی BP یا شبکه عصبی GA-BP، ضریب همبستگی R، پس از آموزش، بالای 0.99 است که با داده ها مطابقت دارد. از طریق محاسبه وزن، عواملی که سهم نسبتاً زیادی در رانش برف محاسبه شده با استفاده از هر دو مدل تمرینی دارند، یکسان هستند. بیشترین وزن زاویه بین جهت باد و خط است و به دنبال آن حداکثر سرعت باد قرار دارد. وزن فرکانس بارش برف نیز زیاد است که اهمیت عوامل دینامیکی و منشأ برف رانش را نیز تایید می کند.

5. ارزیابی حساسیت برف و ارزیابی دقت تجزیه و تحلیل

5.1. ارزیابی حساسیت

بر اساس محاسبات مدل WOE و محاسبه گر شبکه ArcGIS، نتایج وزن در جدول 4 در محاسبه بهینه سازی جایگزین شد و یک نمودار منطقه بندی حساسیت برف بهینه شده ( شکل 18 ) قابل بازسازی است. نتایج نشان می دهد که
  • مکان منطقه غلظت حساس به بالا محاسبه شده توسط سه مدل بدون تغییر است و همه آنها بین DK57 کیلومتر و DK116 کیلومتر هستند. پس از بهینه‌سازی وزن شبکه عصبی BP، درجه حساسیت DK 230–DK 231+300 کیلومتر بهبود یافته است، از ناحیه حساسیت کم به ناحیه حساسیت متوسط. پس از بهینه‌سازی وزن مدل GA-BP، سطح حساسیت DK23–DK33+400 کیلومتر بهبود می‌یابد، به‌ویژه بخش DK32+400 km–DK33+400 کیلومتر از یک منطقه متوسط ​​به یک منطقه پرخطر تغییر می‌کند.
  • نتایج تجزیه و تحلیل وزن با تجزیه و تحلیل نظری مطابقت دارد. عواملی که سهم بیشتری در حساسیت برف رانش دارند عبارتند از زاویه بین جهت باد و خط، حداکثر سرعت باد، میزان بارش برف و فراوانی بارش برف.
  • در مقایسه با مدل‌های WOE و WOE-BP، مدل WOE-GA-BP نسبت بیشتری از مناطق با حساسیت بالا را در نقشه پهنه‌بندی حساسیت به‌دست آورد و مناطق وقوع برف بیشتر را شامل شد، که اهمیت عملی بیشتری برای هدایت مناطق حفاظت از برف رانش دارد. .

5.2. ارزیابی دقت

در این مطالعه، منحنی مشخصه عملکرد گیرنده (ROC) و سطح زیر منحنی (AUC) به عنوان استانداردهای اندازه گیری در نظر گرفته شد. فاوست مطالعه مفصلی در مورد نظریه اساسی و روش محاسبه منحنی ROC و AUC انجام داد [ 61 ].
با توجه به نتایج تحقیق، نتایج مربوط به مقدار AUC و دقت ارزیابی به شرح زیر است: AUC < 0.7، دقت ارزیابی ضعیف. 0.7 < AUC < 0.8، دقت ارزیابی متوسط. AUC > 0.8، دقت ارزیابی خوب. این مطالعه DSSI را به 100 بازه از بزرگ به کوچک تقسیم می کند و به تدریج فراوانی وقوع تجمعی برف رانش در هر بازه را شمارش می کند. فرکانس کل شبکه منطقه مورد مطالعه به عنوان آبسیسا در نظر گرفته می شود، و فرکانس وقوع تجمعی برف در حال حرکت، مختصات عمودی هنگام ترسیم منحنی ROC است ( شکل 19 ).
با توجه به منحنی ROC، نواحی AUC مربوط به سه مدل ارزیابی 0.747 (WOE)، 0.748 (WOE-BP) و 0.785 (WOE-GA-BP) هستند که همگی به دقت ارزیابی خوبی دست یافته اند. پس از اینکه الگوریتم BP وزن ها را بهینه کرد، دقت ارزیابی مدل تنها 0.134٪ بهبود می یابد. پس از اینکه الگوریتم GA-BP وزن ها را بهینه کرد، دقت ارزیابی مدل به طور قابل توجهی بهبود یافته و به 5.1٪ می رسد که نزدیک به استاندارد بهینه 0.8 است.

6. نتیجه گیری

در این مقاله، مدل WOE، مدل WOE-BP و مدل WOE-GA-BP برای مطالعه سیستم شاخص ارزیابی حساسیت برف رانش در طول راه‌آهن مورد استفاده قرار گرفت. تاثیر وزن هر شاخص و اثر ارزیابی هر مدل با داده های میدان باد به دست آمده از پایش میدانی ترکیب شد. نتایج حاکی از موارد زیر بود:
  • با در نظر گرفتن راه‌آهن Afuzhun در سین‌کیانگ به‌عنوان هدف تحقیقاتی خاص، می‌توان سیستم شاخص ارزیابی برای حساسیت برف رانش در راه‌آهن را با انتخاب ده عامل تأثیرگذار مانند ارتفاع، بارش برف، زاویه بین جهت‌های باد و خط ایجاد کرد. با استفاده از DSSI پیشنهاد شده در این مقاله، مدل WOE را می توان برای به دست آوردن منطقه بندی اولیه حساسیت برف رانش در طول راه آهن استفاده کرد.
  • بر اساس طبقه بندی اولیه حساسیت برف رانش، 4000 سلول شبکه به طور تصادفی به عنوان نمونه آموزشی انتخاب شدند و تأثیر هر شاخص بر وزن نتایج ارزیابی با استفاده از الگوریتم های BP و GA-BP محاسبه شد. نتایج نشان داد که وزن زاویه بین جهت باد و خط بیشترین و به دنبال آن بیشترین سرعت باد و فراوانی بارش برف سنگین قرار دارد.
  • وزن های محاسبه شده برای بهینه سازی مدل WOE استفاده شد. نتایج نشان داد که دقت ارزیابی همه مدل‌ها بهبود یافته است. الگوریتم GA-BP دقت ارزیابی را با 5.1% به 0.785 بهبود داد و به دقت ارزیابی بالایی دست یافت.
  • الگوریتم GA-BP می تواند به طور موثر رابطه غیرخطی پیچیده بین شاخص های مختلف را مطالعه کند و نتایج ارزیابی را به دست آورد که بسیار با وضعیت واقعی سازگار است. این روش می‌تواند به‌طور موثر منطقه‌ی با بروز بالا رانش برف را در راه‌آهن‌های خطی پیدا کند و مبنایی نظری برای پیشگیری و کنترل مؤثر برف‌های رانش فراهم کند.
  • در زمینه های کاربردی نسبتا بالغ برای WOE، مانند ارزیابی حساسیت زمین لغزش، دقت ارزیابی این مدل ارزیابی می تواند به 0.8 یا حتی بالاتر برسد. در مقایسه، دقت ارزیابی این مدل برای مهندسی خطی (مانند راه آهن) پایین است. در کاربرد آتی این تحقیق، بر بهینه سازی مدل ارزیابی برای بهبود دقت ارزیابی مدل تمرکز خواهیم کرد.
  • دقت ارزیابی این روش تا حدی به دقت داده ها به ویژه داده های میدان باد بستگی دارد. این مطالعه مبتنی بر پایش در محل است و زمان قابل توجهی برای جمع آوری داده ها می گیرد. از این رو، تحقیقات بیشتری برای توسعه روش کارآمدتر و ساده تر برای به دست آوردن داده های میدانی مورد نیاز است.

منابع

  1. Wang, Z. Snowdrift and Treat Study در چین ; انتشارات دانشگاه لانژو: لانژو، چین، 2001. [ Google Scholar ]
  2. لیو، اچ. Lang، Y. تغییر روند و توزیع زمانی- مکانی بارش برف در چین. منطقه خشک Res. 2005 ، 22 ، 125-129. [ Google Scholar ]
  3. بایدو بایک. بارش برف. در دسترس آنلاین: https://baike.baidu.com/item/%E9%A3%8E%E5%90%B9%E9%9B%AA/66408?fr=aladdin[N/OL] (دسترسی در 4 فوریه 2022 ).
  4. Bagnold, RA فیزیک شن و ماسه دمیده و تپه های بیابانی . Methuen: لندن، بریتانیا، 1941. [ Google Scholar ]
  5. Zhang، Z. منطقه ای کردن رانش برف در چین. JMS 1999 ، 17 ، 312-317. [ Google Scholar ]
  6. لیو، اچ. وانگ، جی. Hu, X. تأثیر وزش برف بر تبادل توده برف و انرژی در کوهستان کیلیان. جی. گلاسیو. ژئوکریول. 2012 ، 34 ، 1084-1090. [ Google Scholar ]
  7. Li، YL; ژائو، تی. لیو، دی.تی. جریان محیط آیرودینامیک Liao، HL در اطراف بادگیرهای راه‌آهن و ویژگی‌های برف در حال حرکت. جی. راه آهن چین. Soc. 2015 ، 37 ، 119-125. [ Google Scholar ]
  8. گائو، WD; لیو، ام.زی. وی، WS; Xu، G. وقوع و کاهش خطرات برف و بهمن در کوه‌های امتداد راه‌آهن Jinghe-Yining، Tianshan، چین. JMS 2005 ، 23 ، 43-52. [ Google Scholar ]
  9. وانگ، X.-Y. تجزیه و تحلیل میدان جریان فاجعه رانش برف به خاکریز جی. ریل. مهندس 2009 ، 8 ، 42-47. [ Google Scholar ]
  10. زو، دی. Qin, Y. تحقیق در مورد پایش نشست زیرین و ویژگی تغییر شکل آن در صحرای گبی. راه آهن مهندس بین المللی 2017 ، 14 ، 942-949. [ Google Scholar ]
  11. لیانگ، اس. هوو، ز. Niu، Y. ارزیابی خطر رانش برف در طول راه آهن مطالعه موردی راه آهن JYH در سین کیانگ، چین. در مجموعه مقالات کنفرانس بین المللی 2009 علوم محیطی و فناوری کاربرد اطلاعات، ESIAT 2009، ووهان، چین، 4 تا 5 ژوئیه 2009. جلد 1، ص 44-47. [ Google Scholar ]
  12. ژانگ، اچ. هو، جی. او، X. لی، ز. Yang, P. تحقیق در مورد ویژگی های تراکم و فرآیند تراکم شن و ماسه بادی برای یک بزرگراه در بیابان. راه آهن مهندس بین المللی 2015 ، 12 ، 806-811. [ Google Scholar ]
  13. چین نیوز. بریتانیا سردترین بهار خود را در 25 سال گذشته تجربه کرد، طوفان های برفی سراسر کشور را فرا گرفت [N/OL]. در دسترس آنلاین: https://www.chinanew-s.com/gj/2013/03-12/4636923.shtml (در 12 مارس 2021 قابل دسترسی است).
  14. پانزده واگن قطار 1817 توسط برف سنگین مدفون شدند و هزاران مسافر را به دام انداختند [N/OL]. در دسترس آنلاین: https://china.huanqiu.com/article/9CaKrnJmQrK (در 14 ژانویه 2022 قابل دسترسی است).
  15. چین نیوز. ایالات متحده بدترین طوفان برفی در تاریخ را تجربه کرد، ایالت ها وضعیت اضطراری اعلام کردند [N/OL]. در دسترس آنلاین: https://www.chinane-ws.com/gj/2013/02-10/4561050.shtml.Global (در 10 فوریه 2022 قابل دسترسی است).
  16. Finney, EA کنترل برف با کاشت درخت. در مجموعه مقالات هیئت تحقیقات بزرگراه ; شورای ملی تحقیقات (ایالات متحده آمریکا)، هیئت تحقیقات بزرگراه: واشنگتن، دی سی، ایالات متحده آمریکا، 1936; جلد 16. [ Google Scholar ]
  17. اوماتسو، تی. ناکاتا، تی. تاکوچی، ک. آریساوا، ی. Kaneda, Y. شبیه سازی عددی سه بعدی بارش برف. قانون سرد. علمی تکنولوژی 1991 ، 20 ، 65-73. [ Google Scholar ] [ CrossRef ]
  18. Ying, C. تحقیق در مورد اقدامات متقابل خطرات وزش برف در بزرگراهها . دانشگاه جیلین: چانگچون، چین، 2007. [ Google Scholar ]
  19. باد، WF; دینگل، WRJ؛ Radok, U. The Byrd Snowdrift Project: طرح کلی و نتایج اساسی، مطالعات در هواشناسی قطب جنوب. قطب جنوب. Res. سر. 1966 ، 9 ، 71-134. [ Google Scholar ]
  20. Kikuchi، T. مطالعه تونل باد از ناهمواری آیرودینامیکی مرتبط با رانش برف. قانون سرد. علمی تکنولوژی 1981 ، 5 ، 107-118. [ Google Scholar ] [ CrossRef ]
  21. هائو، ی. هو، سی. وی، جی. ژانگ، جی. دای، جی. تحقیق در مورد مکانیسم دیوار برفی. J. Traffic Transp. مهندس 2006 ، 4 ، 37-38. [ Google Scholar ]
  22. تومابچی، ت. یاماگاتا، تی. Takahashi، A. مطالعه بنیادی در مورد خسارت برف در هوکایدو: تجزیه و تحلیل خسارت برف از دیدگاه برنامه ریزی توسعه و ساخت و ساز منطقه. ترانس. AIJ 1993 ، 447 ، 6-68. [ Google Scholar ]
  23. فنگ، ایکس. لو، آ. Zeng, Q. مطالعه در مورد ارزيابي و ارزيابي بلاياي برف با استفاده از سنجش از دور در مناطق اصلي چوپاني چين. J. Remote Sens. 1997 ، 1 ، 129-134. [ Google Scholar ]
  24. والینگر، ای. فریدمن، جی. مدل هایی برای ارزیابی خطر آسیب برف و باد در جنگل های کاج، صنوبر و توس در سوئد. جی. محیط زیست. مدیریت 1999 ، 24 ، 209-217. [ Google Scholar ] [ CrossRef ]
  25. جیمیسون، بی. Stethem، C. مخاطرات و مدیریت بهمن برفی در کانادا: چالش ها و پیشرفت. نات. خطرات 2002 ، 26 ، 35-53. [ Google Scholar ] [ CrossRef ]
  26. لی، اس. فنگ، ایکس. Zuo, W. تحقیق در مورد ارزیابی جامع فازی برای درجه خطرناک منطقه ای فاجعه برفی در Nagqu از تبت. جی. نات. فاجعه علمی. 2001 ، 10 ، 86-91. [ Google Scholar ]
  27. لیانگ، تی. گائو، ایکس. لیو، ایکس. فاجعه برفی در منطقه آلتای – مدل پایش سنجش از راه دور و روش ارزیابی آن. چانه. J. Appl. Ecol. 2004 ، 15 ، 2272-2276. [ Google Scholar ]
  28. لیو، ایکس. چن، کیو. لیانگ، تی. گوا، ز. چای، کیو. استقرار سیستم‌های سنجش از راه دور سنجش از راه دور و سیستم‌های برآورد خسارت بلایای برفی در منطقه شبانی آلتای سین‌کیانگ. چانه. J. Appl. Ecol. 2006 ، 17 ، 215-220. [ Google Scholar ]
  29. Dong, F. A Study on Disaster Assessment and Grade Classification of Grassland Snow Disaster in Xilinguole League of Inner Mongolia ; دانشگاه عادی شمال شرقی: چانگچون، چین، 2008. [ Google Scholar ]
  30. فو، ی. شیائو، جی. شیائو، آر. اره.؛ لی، اف. ژائو، اچ. مدل ارزیابی ریسک فاجعه برفی در استان چینگهای بر اساس Gis. ترانس. CSAE 2010 ، 26 (Sup. 1)، 197-205. [ Google Scholar ]
  31. کشتی.؛ Chen, J. مطالعه بر روی پایش بلایای برفی در مناطق وسیع با پشتیبانی GIS و RS. Acta Geogr. گناه 1996 ، 51 ، 296-305. [ Google Scholar ]
  32. لی، تی. سان، ی. چن، ایکس. یو، اچ. ارزیابی خطر فاجعه برفی در استان هبی بر اساس GIS. علمی هنان 2018 ، 36 ، 1099-1104. [ Google Scholar ]
  33. وانگ، ایکس. لو، ایکس. ممکن است.؛ وانگ، ایکس. مطالعه روش ارزیابی بلایای برفی و منطقه‌بندی بلایای برفی در سین‌کیانگ. جی. گلاسیول. ژئوکریول. 2019 ، 41 ، 836-844. [ Google Scholar ]
  34. لیو، ی. کائو، ال. بای، X. تأثیر آب و هوای فاجعه بر ایمنی ترافیک آزادراه در استان هیلونگجیانگ و اقدامات دفاعی دقیق. جی. نات. فاجعه علمی. 2019 ، 28 ، 114-118. [ Google Scholar ]
  35. وو، دبلیو. Qi، Q. فن، ی. یانگ، اس. بررسی ارزیابی بلایای برفی در چین. جی فاجعه. 2013 ، 28 ، 152-158. [ Google Scholar ]
  36. سویی، کیو. وانگ، ی. لی، تی. لیو، کیو. یو، اچ. کاربرد ترکیب اطلاعات چند منبعی در ارزیابی ریسک ترافیک فاجعه برفی. Geogr. Inf. علمی 2018 ، 20 ، 1571-1578. [ Google Scholar ]
  37. Berrocal، VJ; Raftery، AE; Gneiting، T. Steed، RC پیش بینی آب و هوای احتمالی برای تعمیر و نگهداری جاده در زمستان. مربا. آمار دانشیار 2010 ، 105 ، 522-537. [ Google Scholar ] [ CrossRef ][ نسخه سبز ]
  38. جیانگ، ایکس. جیانگ، ال. ژائو، جی. مکانیسم هیدرومکانیکی رسوب برف جاده و مدل عمق آن. Jilin Daxue Xuebao (Gongxueban)/J. دانشگاه جیلین 2006 ، 36 ، 152-156. [ Google Scholar ]
  39. لیو، کیو. Tang, A. تحقیق در مورد خطر فاجعه سیستم بزرگراه بر اساس تجزیه و تحلیل احتمال. Xinan Jiaotong Daxue Xuebao/J. دانشگاه جیائوتنگ جنوب غربی 2020 . اولین شبکه [ Google Scholar ]
  40. وو، پی. چن، اف. لیو، جی. ما، ال. لیو، ال. Hu, Z. ارزیابی و پیش بینی رانش در کاهش خطر در بزرگراه ها بر اساس روش ارزیابی جامع فازی. J. Saf. محیط زیست 2017 ، 17 ، 2273-2276. [ Google Scholar ]
  41. فن، Q. جو، ن. Xiang، X. Hua, J. ارزیابی خطرات زمین لغزش با وزن شواهد – مطالعه موردی در گوئیژو، چین. J. Eng. جئول 2014 ، 22 ، 474-481. [ Google Scholar ]
  42. بونهام-کارتر، GF; آگتربرگ، FP; رایت، DF ادغام مجموعه داده های زمین شناسی برای اکتشاف طلا در نوا اسکوشیا. ASPRS 1988 ، 54 ، 1585-1592. [ Google Scholar ]
  43. آگتربرگ، FP; بونهام-کارتر، GF; چنگ، QM; Wright، DF مدل سازی شواهد و رگرسیون لجستیک وزنی برای نقشه برداری پتانسیل معدنی. محاسبه کنید. جئول 1993 ، 25 ، 13-32. [ Google Scholar ]
  44. خو، سی. دای، اف سی؛ ارزیابی حساسیت زمین لغزش زلزله XW، XW بر اساس پلت فرم GIS و مدل‌سازی وزن شواهد. زمین علم – جی. دانشگاه چین Geosci. 2011 ، 36 ، 1155-1164. [ Google Scholar ]
  45. شیا، سی. ژو، ک. چنگ، ی. Xu, D. مدل پیش بینی smowdrift در بزرگراه بر اساس کار جدید عصبی BP. J. Tongji Univ. نات. علمی 2017 ، 45 ، 714-721. [ Google Scholar ]
  46. لیو، ی.ال. یین، KL; لیو، ب. کاربرد مدل رگرسیون لجستیک و شبکه عصبی مصنوعی در ارزیابی فضایی خطرات زمین لغزش. J. Eng. جئول هیدروژئول. 2010 ، 37 ، 92-96. [ Google Scholar ]
  47. چنگ، سی.-بی. لی، ES با استفاده از شبکه تطبیقی ​​فازی در تحلیل رگرسیون فازی. محاسبه کنید. ریاضی. Appl. 1999 ، 38 ، 123-140. [ Google Scholar ] [ CrossRef ][ نسخه سبز ]
  48. Zhou، WY تأیید ویژگی‌های ناپارامتری شبکه‌های عصبی پس انتشار برای طبقه‌بندی تصویر. IEEE Trans. Geosci. Remote Sens. 1999 , 37 , 771-779. [ Google Scholar ] [ CrossRef ]
  49. زو، سی. ژانگ، جی. لیو، ی. ما، دی. لی، ام. Xiang، B. مقایسه مدل های شبکه عصبی GA-BP و PSO-BP با مدل اولیه BP برای ارزیابی خطر زمین لغزش های ناشی از بارندگی در مقیاس منطقه ای: مطالعه موردی در سیچوان، چین. نات. خطرات 2020 ، 100 ، 173-204. [ Google Scholar ] [ CrossRef ]
  50. هوانگ، RQ زمین لغزش های مقیاس بزرگ و مکانیسم های لغزش آنها در چین از قرن بیستم. چانه. جی. راک مکانیک. مهندس 2007 ، 26 ، 433-454. [ Google Scholar ]
  51. یالچین، ا. ریس، اس. آیدین اوغلو، AC; Yomralioglu، T. یک مطالعه مقایسه ای مبتنی بر GIS در مورد نسبت فرکانس، فرآیند سلسله مراتب تحلیلی، آمار دو متغیره و روش های رگرسیون لجستیک برای نقشه برداری حساسیت زمین لغزش در ترابزون، شمال شرقی ترکیه. کاتنا 2011 ، 85 ، 274-287. [ Google Scholar ] [ CrossRef ]
  52. شنگ، ی. ما، دبلیو. ون، ز. Zhang, M. تجزیه و تحلیل تفاوت در حالت حرارتی بین شیب رو به جنوب و شیب رو به شمال خاکریزی راه آهن در منطقه همیشه منجمد. چانه. جی. راک مکانیک. مهندس 2005 ، 24 ، 3197-3201. [ Google Scholar ]
  53. لیو، بی. Wu, X. تحقیق در مورد خطر فاجعه ناشی از بارش شدید برف در منطقه آلتای. شهاب سنگ واحه صحرا. 2016 ، 10 ، 47-52. [ Google Scholar ]
  54. Wang, Z. تحقیق در مورد جریان باد و برف چینی و پیشگیری از آن . انتشارات دانشگاه لانژو: لانژو، چین، 2001. [ Google Scholar ]
  55. پرادان، بی. لی، اس. ارزیابی حساسیت زمین لغزش و تحلیل اثر عاملی: شبکه های عصبی مصنوعی پس انتشار و مقایسه آنها با نسبت فرکانس و مدل سازی رگرسیون لجستیک دو متغیره. محیط زیست مدل. نرم افزار 2010 ، 25 ، 747-759. [ Google Scholar ] [ CrossRef ]
  56. Nefeslioglu، HA; گوکچ اوغلو، سی. Sonmez, H. ارزیابی استفاده از رگرسیون لجستیک و شبکه‌های عصبی مصنوعی با استراتژی‌های نمونه‌گیری مختلف برای تهیه نقشه‌های حساسیت زمین لغزش. مهندس جئول 2008 ، 97 ، 171-191. [ Google Scholar ] [ CrossRef ]
  57. Kanungo، DP; آرورا، MK; سرکار، س. گوپتا، RP مطالعه تطبیقی ​​روش‌های وزن‌دهی مرسوم، جعبه سیاه ANN، فازی و ترکیبی عصبی و فازی برای پهنه‌بندی حساسیت زمین لغزش در هیمالیاهای دارجلینگ. مهندس جئول 2006 ، 85 ، 347-366. [ Google Scholar ] [ CrossRef ]
  58. لارنس، جی. Fredrickson, J. Brainmaker’s Guide and Reference Manual . نرم افزار علمی کالیفرنیا: نوادا سیتی، کالیفرنیا، ایالات متحده آمریکا، 1998. [ Google Scholar ]
  59. ویدرو، بی. آدالین و مدالین – 1963. در مجموعه مقالات اولین کنفرانس بین المللی IEEE در مورد شبکه های عصبی، سن دیگو، کالیفرنیا، ایالات متحده آمریکا، 21 تا 24 ژوئن 1987. [ Google Scholar ]
  60. باوم، ای بی. هاوسلر، دی. چه اندازه شبکه تعمیم معتبری می دهد؟ محاسبات عصبی 1989 ، 1 ، 151-160. [ Google Scholar ] [ CrossRef ]
  61. Fawcett, T. مقدمه ای بر تجزیه و تحلیل ROC. تشخیص الگو Lett. 2006 ، 27 ، 861-874. [ Google Scholar ] [ CrossRef ]
شکل 1. نمودار جریان محاسبه.
شکل 2. واحد ژئومورفولوژیکی. ( الف ) شکل زمین تپه ای، ( ب ) دشت تپه ای.
شکل 3. نقشه مسیر.
شکل 4. نقاط پایش و ایستگاه های هواشناسی. ( الف ) چیدمان نقاط نظارت، ( ب ) ایستگاه های هواشناسی.
شکل 5. نقاط پایش و ایستگاه های هواشناسی.
شکل 6. سیستم شاخص ارزیابی.
شکل 7. نتایج تجزیه و تحلیل آماری ارتفاع.
شکل 8. نتایج تجزیه و تحلیل آماری ارتفاع.
شکل 9. نتایج تحلیل آماری زبری سطح.
شکل 10. نتایج تحلیل آماری جنبه.
شکل 11. نتایج تجزیه و تحلیل آماری بارش برف.
شکل 12. فراوانی نتایج تجزیه و تحلیل آماری بارش برف سنگین.
شکل 13. نتایج تحلیل آماری سرعت باد. ( الف ) سرعت متوسط ​​باد، ( ب ) حداکثر سرعت باد.
شکل 14. شامل نتایج تجزیه و تحلیل آماری زاویه.
شکل 15. نتایج تحلیل آماری فرکانس سرعت باد برفی.
شکل 16. پارتیشن حساس مدل WOE.
شکل 17. ضرایب همبستگی آموزش شبکه عصبی. ( الف ) BP، ( ب ) GA-BP.
شکل 18. پارتیشن خطر. ( الف ) مدل WOE-BP، ( ب ) مدل WOE-GA-BP.
شکل 19. نمودار مقایسه منحنی ROC و دقت. ( الف ) منحنی ROC، ( ب ) نمودار مقایسه.

1 نظر

دیدگاهتان را بنویسید